【天极网云计算频道】近日亚马逊AWS宣布推出AmazonMachineLearning(亚马逊机器学习),这是一项全面的托管服务,让任何开发者都能够轻松使用历史数据开发并部署预测模型。这些模型用途广泛,包括检测欺诈、防止用户流失并改进用户支持。基于与亚马逊公司内开发者所使用的同样经过验证、高度可扩展并且每周生成超过500亿个预测的机器学习技术,亚马逊机器学习的API和向导能够为开发者提供关于机器学习模型的创建和调试流程的指导,从而轻松部署并扩展模型,支持数十亿级别的预测。AmazonMachineLearning能够与AmazonSimpleStorageService(AmazonS3)、AmazonRedshift和AmazonRelationalDatabaseService(AmazonRDS)集成,让客户轻松使用存储在AWS云服务上的已有数据。
目前,由于需要统计学、数据分析和机器学习等方面的专业知识,只有极少数开发者能够利用机器学习功能建立应用。另外,传统意义上的机器学习应用方法涉及很多手动、重复和容易出错的任务,例如计算汇总统计学、进行数据分析、通过机器学习算法利用数据训练模型、评估和优化模型,然后才能使用该模型生成预测。通过降低复杂性并对上述步骤进行自动化,亚马逊机器学习让所有软件开发者都可以广泛地使用机器学习技术。
借助亚马逊机器学习,开发者可以使用AWS管理控制台或API来快速地根据需要创建大量模型,并利用这些模型生成大吞吐量的预测,而不必担心配置硬件、分发和缩放计算负载、管理依赖性或监测和修复基础架构故障等问题。由于没有准备成本,开发者可以按使用情况付费,能够从小规模开始并随着应用的扩展而扩大使用规模。
亚马逊机器学习高级经理JeffBilger表示,亚马逊拥有悠久的机器学习传统。它支持为客户推荐商品,让AmazonEcho能够根据你的声音做出回应,让我们能够在30分钟内就可以卸载满满一卡车的商品并完成上架。我们很早就意识到,只有让亚马逊公司内的所有开发者都能使用机器学习,才能充分发挥这项技术的潜力。亚马逊机器学习源自我们从数千名亚马逊开发者快速建立模型、进行实验并扩展至全球性预测应用的过程中所学到的经验。
由于高质量的数据对于开发精确的模型至关重要,亚马逊机器学习让开发者能够对用于训练模型以发现数据模式规律的数据集的统计属性进行可视化处理。这样,开发者就能够更好地理解数据分布,并在模型训练之前发现缺失或无效的值,从而节约时间。之后,亚马逊机器学习会自动变换用于训练的数据并优化机器学习算法,开发者不需要深入理解机器学习算法或调试参数,即可创建最佳模型。
通过使用亚马逊机器学习技术,在没有任何机器学习经验的前提下,单个亚马逊开发者可以在20分钟内解决之前需要两名开发者花费45天才能解决的问题——并且所建立的模型同样能够实现92%的精确度。一旦模型创建完毕,开发者就可以直接从亚马逊机器学习轻松地进行批量处理或生成实时预测,无需开发和管理自有基础架构。