什么是iptv


IPTV广义的一种定义以国家广电总局“互联网等信息网络传播视听节目管理办法”(简称39号令)为代表,是“以互联网协议(IP)作为主要技术形态,以计算机、电视机、手机等各类电子设备为接收终端,…”。而这里所谓的“视听节日”就是指“利用摄影机、摄像机、录音机和其它视音频摄制设备拍摄、录制的,由可连续运动的图像或可连续收听的声音组成的视音频节目”。IPTV定义的内涵覆盖整个产业链。还有人以终端为中心做定义,认为IPTV就是经过机顶盒(STB)做处理后,利用普通或高清晰的电视机做显示终端的所有业务和技术的总和,包括视听类和信息服务类业务及技术两大类。也有人以内容为中心定义IPTV,认为IPTV就是通过IP网络,以直播方式给用户提供电视节目。

与此同时,业界对IP的理解也明显存在偏差。一种把这里的“IP”等价于互联网,即IPTV就是“基于公众互联网的电视”,由此也就产生了很多的疑问:如安全如何保证,服务质量又如何等;另外,与VoIP中对“IP”的理解力式一样,对IPTV中“IP”化程度的理解电存在差异:一种理解是端到端的(即从对节目源的信道编码开始,到用户显示终端之前的处理)全IP化或部分IP化(比如只是承载网络IP化);另外一种是将IPTV业务中的“控制平面”、“管理平面”和“用户平面”都IP化(比如都承载在一张IP网络中),或有一个或两个以上平面IP化(比如“数据平面”仍然走Cable,而控制平面走IP网络)。

伴随着对“IP”和“TV”理解的不同,自然而然的对于“IP”与“TV”关系的理解也因此出现了至少两种观点:

·“IPTV=IP TV"模式:在这种实现方式中,IPTV的上行控制和IPTV的媒体流分别工作在IP网络和Cable网络中,从网络的角度看二者是完全并行的。从技术的角度看,可以理解为这时IPTV的“数据平面”工作在广播方式的Cable上,“控制平面”和“管理平面”工作在IP网络上。

·“IPTV=TVoverIP”模式:即包括TV在内的所有业务都承载在IP之上,当然也包括了IPTV的“数据平面”、“控制平面”和“管理平面”全部一个平面,即所有平面都IP化。

ITU-T焦点组(FGIPTV)于年7月的第一次会议上初步确定了IPTV的定义,即在IP网络上传送包含电视、视频、文本、图形和数据等,并提供服务质量/服务感受(QoS/QoE)保证、安全、交互性和可靠性的可管理的多媒体业务。由此可以看出,IPTV是一种可管理的、需要服务质量和安全保证的多媒体业务,一种明显有别于互联网上不可控不可管、质量和安全没有保证状态的流媒体应用。

IPTV特别工作组第一阶段的立项有6个:IPTV业务需求、IPTV体系架构、IPTV业务平台与内容平台接口、IPTV业务平台与STB接口、支持IPTV的DSLAM设备及STB设备技术规范等。目前所有6个标准都进入了“报批稿”阶段,有的(如“业务需求”)已结束第一阶段的工作进入了第二阶段的制定工作。

IPTV特别组于年5月新启动了“IPTV对承载网的技术要求”、“内容、业务和网络安全”、“网络管理与业务管理”、“业务运营平台”和“终端测试规范”等12个相关标准的研究工作。目前包括“网络管理与业务管理”等部分标准也已经进入了送审稿甚至报批稿阶段。

中国在IPTV业务的实践、研发和标准化方面,与国际保持同步甚至有所超前。年5月,在CCSAIPTV特别工作组下面成立了一个“国际标准小组”,专门负责将CCSA的研究成果提交给ITU-
T。以信息产业部电信研究院、中国电信、中国网通、华为、中兴、上海贝尔等单位为主,在已经进行的3次会议上累计提交文稿145篇,数量一直据各国之首,质量(采纳率和重要性)也较以往有明显提高,成功地将CCSAIPTV工作组的大量研究成果提交给了ITU-
T。同时,在FGIPTV管理层,有1名副主席、3名工作组(联合)组长由中国方面担任,还有多个编辑席位。中国已经成为推动ITU-TFGIPTV工作的最重要的力量。

国际上与IPTV标准相关的标准化组织很多,典型的包括ATISIIF、ISMA、DSL论坛、Ipsphere、IETF、ISO/IEC等。他们各自的成员背景、侧重点价值取向和利益等均不相同。下面重点介绍ITU-T的IPTV标准化活动。

ITU-T于年4月在日内瓦举行了全球开放式IPTV标准咨询会,决定成立FGIPTV,每3个月举行一次会议,以发起、协调和统一全球的IPTV标准化活动。研究包括ITU-T之外的其他标准化组织和论坛等正在进行的IPTV标准化活动,以及在NGN框架中融入IPTV的问题。

年7月举行的第一次FGIPTV会议最大成果是明确了各个IPTV工作组的职责,批准了各个工作组的领导人,启动了每个工作组的工作以及各个工作组的任务,讨论并初步提出了IPTV的定义,并确定了FGIPTV的架构6个工作组。6个工作组分别是:架构与需求(WGI),QoS与性能(WG2)。业务安全与内容保护(WG3),IPTV网络控制(WG4),端系统与互操作性(WG5),中间件、应用和内容平台(WG6)。

年11月举行的第二次会议按照上次会议确定的ToR(TermofReference)和各个工作组的研究范围,继续分组讨论IPTV业务需求和IPTV的体系架构,还涉及IPTV安全、QoE/QoS、网络控制、终端与互操作以及媒体平台与中间件等课题,使得每个工作组都第一次有了输出文档,为每个组的下一步的标准化工作提供了素材。

年1月举行的第三次会议在最关键的“业务需求”和“网络架构”两个输出文档上,取得了明显的进展。需求和网络架构的初步确定,为下一步各工作组工作的开展,奠定了坚实的基础。

从年贝尔实验室Cutler等人进行差分脉冲编码调制(DPCM)技术的研究开始,视频压缩编码技术经历了50余年的发展。在这一过程中,逐渐形成了变换编码、预测编码、熵编码3类经典技术,分别用于去除视频信号的空域冗余、时域冗余及统计冗余。并基于这些经典技术,逐渐形成了以块为单元的预测加变换的混合编码框架。到目前为止,已有的视频编码标准都基于这一框架,包括国际电信联盟(ITU-T)的H.261/3/4视频编码建议以及国际标准化组织/国际电工委员会(ISO/IEC)的MPEG-1/2/4视频编码标准。这些标准及其技术对视频信号提供了一种高效表达方式,使得巨大的视频数据能够在有限带宽下传输以及在有限空间下存储。其中,MPEG-2标准在世界范围内得到了广泛应用,已经成为电视广播应用的基础性支撑标准。但MPEG-2标准制订于年,属第一代视频编码技术,近10年视频编码技术的发展,使得MPEG-2标准在新一代IPTV、高清数字电视广播、无线移动媒体通信、流媒体服务等方面的应用上不再高效与经济。新的应用需要新的高效信源编码方案。

数字音视频编解码标准(AVS)标准第2部分:视频(AVS1-P2)[1]的技术规范完成于年12月,该标准面向标清高清视频编码应用。AVS视频标准吸收了国内外研究机构近年来的优秀研究成果,属于高效的第二代视频编码技术。相比于MPEG-2标准,编码效率提高2~3倍。如果以AVS视频标准进行标清视频广播应用,可以将MPEG-2标准所需的5~6Mb/s传输带宽降低到1.5~3Mb/s。因此,即使在不进行大规模宽带光纤网络升级的情况下,借助于AVS视频技术,IPTV应用也可以在现有家用数字用户线(DSL)网络的2Mb/s带宽下进行大规模实施。在新的宽带网络上,AVS视频标准将使业务量翻番。

在获得高编码效率的同时,AVS视频标准尽可能保持了低的计算实现复杂度。当编码高清视频信号时,AVS视频获得了与先进视频编码标准AVC/H.264主要档次(MainProfile)相当的编码效率,但解码器的实现复杂度只有其60%~70%。在专利许可方面,AVS通过简洁的一站式许可政策,解决了MPEG-4AVC/H.264被专利许可问题缠身难以产业化的弊端,并且专利许可费用大大低于国际同类标准。

AVS视频标准高效的技术、简洁的实现方案为其成功应用奠定了基础。但要得到市场认可,还需要其他方面优势的配合。MPEG-4标准没有广泛应用的一个重要原因是过度的专利保护所导致的高额专利费限制了技术的推广。因此,AVS标准制订之初就认真分析了国内外标准和知识产权领域的经验教训,充分考虑知识产权问题对标准推广的影响,定义专利技术被标准接受的基本原则为:为保证标准的先进性,AVS标准不排斥各种专利技术,但专利进入AVS标准必须遵守一定的条件,必须将专利的利益索求限制在一个合理的水平上,以保证标准的公益性。AVS通过简洁的一站式许可方式,解决了MPEG-4AVC/H.264被专利许可问题缠身难以产业化的弊端。AVS视频标准不同于H.264标准,后者是一个独立的视频标准,而AVS标准是一套包含系统、视频、音频、媒体版权管理在内的完整标准体系,这保证了实际应用系统所需的技术完备性。因此AVS视频标准具有技术高效、实现方案简洁,专利许可政策简单、许可费用低廉,相关标准配套的特色。

AVS1-P2视频标准采用经典的混合编码框架,如图1所示。此框架与以往视频标准相同,但由于不同标准制订时出于对不同应用的考虑,在技术取舍上对复杂度-性能的衡量指标各不相同,因而在复杂性、编码效率上的表现也各不相同。比如,一般认为H.264的编码器大概比MPEG-2复杂9倍,而AVS视频标准则由于编码模块中的各项技术复杂度都有所降低,其编码器复杂度大致为MPEG-2的6倍,但编码高清序列AVS视频标准具有与H.264相近的编码效率。

在图1所示框架下,视频编码的基本流程为:将视频序列的每一帧划分为固定大小的宏块,通常为16×16像素的亮度分量及2个8×8像素的色度分量(对于4?誜2?誜0格式视频),之后以宏块为单位进行编码。对视频序列的第一帧及场景切换帧或者随机读取帧采用I帧编码方式,I帧编码只利用当前帧内的像素作空间预测,类似于JPEG图像编码方式。其大致过程为,利用帧内先前已经编码块中的像素对当前块内的像素值作出预测(对应图1中的帧内预测模块),将预测值与原始视频信号作差运算得到预测残差,再对预测残差进行变换、量化及熵编码形成编码码流。对其余帧采用帧间编码方式,包括前向预测P帧和双向预测B帧,帧间编码是对当前帧内的块在先前已编码帧中寻找最相似块(运动估计)作为当前块的预测值(运动补偿),之后如I帧的编码过程对预测残差进行编码。编码器中还内含一个解码器,如图1中青绿色部分所示。内嵌解码器模拟解码过程,以获得解码重构图像,作为编码下一帧或下一块的预测参考。解码步骤包括对变换量化后的系数进行反量化、反变换,得到预测残差,之后预测残差与预测值相加,经滤波去除块效应后得到解码重构图像。以上编码框架包含如下关键技术:

AVS视频标准采用空域内的多方向帧内预测技术。以往的编码标准都是在频域内进行帧内预测,如MPEG-2的直流系数(DC)差分预测、MPEG-4的DC及高频系数(AC)预测。基于空域多方向的帧内预测提高了预测精度,从而提高了编码效率。AVC/H.264标准也采用了这一技术,其预测块大小为4×4及16×16,其中4×4帧内预测时有9种模式,16×16帧内预测时有4种模式。AVS视频标准的帧内预测基于8×8块大小,亮度分量只有5种预测模式,大大降低了帧内预测模式决策的计算复杂度,但性能与AVC/H.264十分接近。除了预测块尺寸及模式种类的不同外,AVS视频的帧内预测还对相邻像素进行了滤波处理来去除噪声。关于帧内预测技术的详细描述参见文献[2]。

变块大小运动补偿是提高运动预测精确度的重要手段之
一,对提高编码效率起重要作用。在以前的编码标准MPEG-

1、MPEG-2中,运动预测都是基于16×16的宏块进行的(MPEG-2隔行编码支持16×8划分),在MPEG-4中添加了8×8块划分模式,而在H.264中则进一步添加了16×8、8×16、8×4、4×8、4×4等划分模式。但实验数据表明小于8×8块的划分模式对低分辨率编码效率影响较大,而对于高分辨率编码则影响甚微,如图2所示。在高清序列上的大量实验数据表明,去掉8×8以下大小块的运动预测模式,整体性能降低2%~4%,但其编码复杂度则可降低30%~40%。因此在AVS1-P2中将最小宏块划分限制为8×

8,这一限制大大降低了编解码器的复杂度。

多参考帧预测使得当前块可以从前面几帧图像中寻找更好的匹配,因此能够提高编码效率。但一般来讲2~3个参考帧基本上能达到最高的性能,更多的参考图像对性能提升影响甚微(如图3所示),复杂度却会成倍增加。H.264最多可采用16个参考帧,并且为了支持灵活的参考图像引用,采用了复杂的参考图像缓冲区管理机制,实现较繁琐。而AVS视频标准限定最多采用两个参考帧,其优点在于:在没有增大缓冲区的条件下提高了编码效率,因为B帧本身也需要两个参考图像的缓冲区。

MPEG-2标准采用1/2像素精度运动补偿,相比于整像素精度提高约1.5dB编码效率;H.264采用1/4像素精度补偿,比1/2精度提高约0.6dB的编码效率,因此运动矢量的精度是提高预测准确度的重要手段之
一。影响高精度运动补偿性能的一个核心技术是插值滤波器的选择。AVC/H.264亚像素插值半像素位置采用6拍滤波,这个方案对低分辨率图像效果显著。由于高清视频的特性,AVS视频标准对1/2像素位置插值采用4拍滤波器[3],其效果与6拍滤波器相同,优点是大大降低了访问存取带宽,是一个对硬件实现非常有价值的特性。

在AVC/H.264标准中,时域直接模式与空域直接模式是相互独立的。而AVS视频标准采用了更加高效的空域/时域相结合的直接模式,并在此基础上使用了运动矢量舍入控制技术[4],AVS标准B帧的性能比H.264中B帧性能有所提高。此外,AVS标准还提出了对称模式[5],即只编码前向运动矢量,后向运动矢量通过前向运动矢量导出,从而实现双向预测。此方案与编码双向运动矢量效率相当。

AVS视频标准采用整数变换代替了传统的浮点离散余弦变换(DCT)。整数变换具有复杂度低、完全匹配等优点。由于AVS1-P2中最小块预测是基于8×8块大小的,因此采用了8×8整数DCT变换矩阵。8×8变换比4×4变换的去相关性能强,在变换模块,AVS标准编码效率相比H.264提高2%(约0.1dB)。同时与H.264中的变换相比,AVS标准中的变换有自身的优点,即由于变换矩阵每行的模比较接近,可以将变换矩阵的归一化在编码端完成,从而节省解码反变换所需的缩放表,降低了解码器的复杂度[6]。

量化是编码过程中唯一带来损失的模块。以前典型的量化机制有两种,一种是H.263中的量化方法,一种是MPEG-2中的加权矩阵量化形式。与以前的量化方法相比,AVS标准中的量化与变换归一化相结合,同时可以通过乘法和移位来实现,对于量化步长的设计,量化参数每增加

8,相应的量化步长扩大1倍。由于AVS标准中变换矩阵每行的模比较接近,变换矩阵的归一化可以在编码端完成,从而解码端反量化表不再与变换系数位置相关。

起源于H.263 的环路滤波技术的特点在于把去块效应滤波放在编码的闭环内,而此前去块效应滤波都是作为后处理来进行的,如在MPEG-4中。在AVS视频标准中,由于最小预测块和变换都是基于8×8的,环路滤波也只在8×8块边缘进行,与H.264对4×4块进行滤波相比,其滤波边数变为H.264的1/4。同时由于AVS视频滤波点数、滤波强度分类数都比H.264中的少,大大减少了判断、计算的次数。环路滤波在解码端占有很大的计算量,因此降低环路滤波的计算复杂度十分重要。

以上是从编码模块各个方面认识AVS,从中不难看出AVS视频标准对每项技术都进行了复杂性与效率的权衡,为所面向的应用提供了很好的解决方案,努力降低复杂度,并保证高的编码效率。

表1给出了年8月中国国家广电总局广播电视规划院主持完成的AVS1-P2视频标准测试结果,整体结论为性能优良。考虑到目前使用MPEG-2标准实施高清电视广播时,一般使用20Mb/s的码率;使用MPEG-2标准实施标清电视广播时,一般使用5~6Mb/s的码率。对照测试结果可以得知,AVS视频码率为MPEG-2标准的一半时,无论是标准清晰度还是高清晰度,编码质量都达到优秀。码率不到其三分之一时,也达到良好到优秀。因此在比MPEG-2视频编码效率提高2~3倍的前提下,AVS视频质量完全达到大范围应用所需的“良好”要求。



2、表3分别给出了AVS1-P2与MPEG-2标准以及AVS1-P2与MPEG-4AVC/H.264标准主要档次的客观编码性能对比,结果为相同码率条件下峰值信噪比(PSNR)的增益。可以看出,AVS1-P2相对于MPEG-2标准编码效率平均提高2.56dB,相比于H.264标准编码效率略低,但平均只有0.11dB的损失。

视频编码从目前业界应用来看主要以MPEG标准族为主,各厂家和不同行业都仿效MPEG标准,出台了一系列参照MPEG标准的行业规范和国家规范,从而使MPEG及其派生的产品应用越来越广。

MPEG-1制定于年,主要是针对CIF标准分析率(NTSC制为352×240,PAL制为352×288)的图像进行压缩,视音频信息经过压缩后的数据码率最大为1.5Mbit/s,主要应用在CD-ROM、Video-CD等数字媒体上进行存储,也可以在局域网、ISDN网上进行视音频信息的传输。

MPEG-2制定于年,该标准主要针对标准数字电视和高清晰度电视在各种应用下的压缩方案和系统层的详细规定,编码码率可达100Mbit/s。MPEG-2特别适用于广播级的数字电视的编码和传送,被认定为SDTV和HDTV的编码标准。

MPEG-4于年定案,随后该标准仍在不停发展和补充。它的特点是更适于交互式AV服务及远程监控,是一个有交互性的动态图像标准。它可以将较大的媒体文件在保证视音频质量下压缩得非常小,利于在网络中传播,因此MPEG-4被ISMA作为流媒体技术标准。目前已经有很多编解码器都是参照MPEG-4标准,如WMV9、Dvix等。



(1)多媒体传送整体框架(DMIF,TheDeliveriesMultimediaIntegrationFramework)

DMIF主要用于解决交互网络中、广播环境下及磁盘存储应用中多媒体应用的操作问题,通过传输多路合成信息来建立客户端和服务器端的连接与传输。

MPEG-4定义了一个系统解码模式,该解码模式描述了一种理想的处理比特流句法语义的解码装置,它要求特殊的缓冲区和实时模式,通过有效地管理,可以更好地利用有限的缓冲区空间。

MPEG-4不仅支持自然声音,而且支持合成声音。MPEG-4的音频部分将音频的合成编码和自然声音的编码相结合,并支持音频的对象特征。

与音频编码类似,MPEG-4也支持对自然和合成的视觉对象的编码。合成的视觉对象包括二维、三维动画和人面部表情动画等。

MPEG-4提供了一系列工具,用于组成场景中的一组对象,并提供一些必要的合成信息组成场景描述。

MPEG-4标准仍在不停发展,目前比较受瞩目的就是MPEG-4(Part10),即H.264标准的研究。H.264标准是由ISO/IEC和ITU-T两大国际标准化组织共同制定的面向实际应用的视频编码新标准。它具有一系列优于MPEG-4(part2)的新特性,可适应更高图像质量和低码速率应用的需求。

在相同的重建图像质量下,H.264比H.263 和MPEG-4(SP)减小50%码率,而且对网络传输具有更好的支持功能,它引入了面向IP包的编码机制,有利于网络中的分组传输,支持网络中视频的流媒体传输;同时,具有较强的抗误码特性,可适应丢包率高、干扰严重的无线信道中的视频传输;此外,能适应不同网络传输,网络亲和力强。



(1)目前世界一些电视组织及媒体运营商纷纷选择H.264作为媒体格式标准,例如(DVB)欧洲标准组织、美国ATSC、韩国DMB及日本的ISDB-T已批准MPEG-4AVC/H.264用于广播电视。



(2)众多主流编码器厂家(如:哈雷、Skystream、科学亚特兰大、Tandberg、汤姆逊、Optibase等)支持H.264,已有产品进入商业应用,而且大多数编码器厂家将推出基于H.264的高清编码器。



(3)H.264新一代DVD的标准,得到大部分内容供应商的认可,目前两大下一代DVD格式的竞争对手(HD-DVD格式和Blu-ray光盘格式)都在定义H.264/AVCHP(HIGHPROFILE)作为必选项支持。



(4)随着目前IPTV业务的发展,H.264标准将成为电信运营商选择的终极媒体格式,同时国内外设备厂家纷纷推出支持H.264标准的机顶盒。



(5)H.264在编码中引入了抗误码的功能,最适合有噪声的无线传输环境,H.264标准被3GPP采纳为移动视频压缩标准。