嵌入式操作系统嵌入式webserver


嵌入式操作系统嵌入式webserver

事实上,在很早以前,嵌入式这个概念就已经存在了。在通信方面,嵌入式系统在20世纪60年代就用于对电子机械电话交换的控制,当时被称为“存储式程序控制系统”(StoredProgramControl)。

嵌入式计算机的真正发展是在微处理器问世之后。1971年11月,Intel公司成功地把算术运算器和控制器电路集成在一起,推出了第一款微处理器Intel4004,其后各厂家陆续推出了许多8位、16位的微处理器,包括Intel8080/8085、8086,Motorola的6800、68000,以及Zilog的Z80、Z8000等。以这些微处理器作为核心所构成的系统,广泛地应用于仪器仪表、医疗设备、机器人、家用电器等领域。微处理器的广泛应用形成了一个广阔的嵌入式应用市场,计算机厂家开始大量地以插件方式向用户提供OEM产品,再由用户根据自己的需要选择一套适合的CPU板、存储器板以及各式I/O插件板,从而构成专用的嵌入式计算机系统,并将其嵌入到自己的系统设备中。

为灵活兼容考虑,出现了系列化、模块化的单板机。流行的单板计算机有Intel公司的iSBC系列、Zilog公司的MCB等。后来人们可以不必从选择芯片开始来设计一台专用的嵌入式计算机,而是只要选择各功能模块,就能够组建一台专用计算机系统。用户和开发者都希望从不同的厂家选购最适合的OEM产品,插入外购或自制的机箱中就形成新的系统,这样就希望插件是互相兼容的,也就导致了工业控制微机系统总线的诞生。1976年Intel公司推出Multibus,1983年扩展为带宽达40MB/s的MultibusⅡ。1978年由Prolog设计的简单STD总线广泛应用于小型嵌入式系统。

20世纪80年代可以说是各种总线层出不穷、群雄并起的时代。随着微电子工艺水平的提高,集成电路制造商开始把嵌入式应用中所需要的微处理器、I/O接口、A/D、D/A转换、串行接口以及RAM、ROM等部件统统集成到一个VLSI中,从而制造出面向I/O设计的微控制器,也就是我们俗称的单片机,成为嵌入式计算机系统异军突起的一支新秀。其后发展的DSP产品则进一步提升了嵌入式计算机系统的技术水平,并迅速地渗入到消费电子、医用电子、智能控制、通信电子、仪器仪表、交通运输等各种领域。

20世纪90年代,在分布控制、柔性制造、数字化通信和信息家电等巨大需求的牵引下,嵌入式系统进一步加速发展。面向实时信号处理算法的DSP产品向着高速、高精度、低功耗发展。Texas推出的第三代DSP芯片TMS320C30,引导着微控制器向32位高速智能化发展。在应用方面,掌上电脑、手持PC机、机顶盒技术相对成熟,发展也较为迅速。特别是掌上电脑,1997年在美国市场上掌上电脑不过四五个品牌,而1998年底,各式各样的掌上电脑如雨后春笋般纷纷涌现出来。此外,Nokia推出了智能电话,西门子推出了机顶盒,Wyse推出了智能终端,NS推出了WebPAD。装载在汽车上的小型电脑,不但可以控制汽车内的各种设备(如音响等),还可以与GPS连接,从而自动操控汽车。

21世纪无疑是一个网络的时代,使嵌入式计算机系统应用到各类网络中去也必然是嵌入式系统发展的重要方向。

由于嵌入式系统一般是应用于小型电子装置的,系统资源相对有限,所以内核较之传统的操作系统要小得多。比如Enea公司的OSE分布式系统,内核只有5K。

嵌入式系统的个性化很强,其中的软件系统和硬件的结合非常紧密,一般要针对硬件进行系统的移植,即使在同一品牌、同一系列的产品中也需要根据系统硬件的变化和增减不断进行修改。同时针对不同的任务,往往需要对系统进行较大更改,程序的编译下载要和系统相结合,这种修改和通用软件的“升级”是完全两个概念。

嵌入式系统一般没有系统软件和应用软件的明显区分,不要求其功能设计及实现上过于复杂,这样一方面利于控制系统成本,同时也利于实现系统安全。

高实时性的系统软件(OS)是嵌入式软件的基本要求。而且软件要求固态存储,以提高速度;软件代码要求高质量和高可靠性。

嵌入式软件开发要想走向标准化,就必须使用多任务的操作系统。嵌入式系统的应用程序可以没有操作系统直接在芯片上运行;但是为了合理地调度多任务、利用系统资源、系统函数以及和专用库函数接口,用户必须自行选配RTOS(Real-TimeOperatingSystem)开发平台,这样才能保证程序执行的实时性、可靠性,并减少开发时间,保障软件质量。

嵌入式系统开发需要开发工具和环境。由于其本身不具备自主开发能力,即使设计完成以后用户通常也是不能对其中的程序功能进行修改的,必须有一套开发工具和环境才能进行开发,这些工具和环境一般是基于通用计算机上的软硬件设备以及各种逻辑分析仪、混合信号示波器等。开发时往往有主机和目标机的概念,主机用于程序的开发,目标机作为最后的执行机,开发时需要交替结合进行。

1)对实时任务有很强的支持能力,能完成多任务并且有较短的中断响应时间,从而使内部的代码和实时内核心的执行时间减少到最低限度。

2)具有功能很强的存储区保护功能。这是由于嵌入式系统的软件结构已模块化,而为了避免在软件模块之间出现错误的交叉作用,需要设计强大的存储区保护功能,同时也有利于软件诊断。

4)嵌入式微处理器必须功耗很低,尤其是用于便携式的无线及移动的计算和通信设备中靠电池供电的嵌入式系统更是如此,如需要功耗只有mW甚至μW级。

嵌入式微处理器是由通用计算机中的CPU演变而来的。它的特征是具有32位以上的处理器,具有较高的性能,当然其价格也相应较高。但与计算机处理器不同的是,在实际嵌入式应用中,只保留和嵌入式应用紧密相关的功能硬件,去除其他的冗余功能部分,这样就以最低的功耗和资源实现嵌入式应用的特殊要求。和工业控制计算机相比,嵌入式微处理器具有体积小、重量轻、成本低、可靠性高的优点。主要的嵌入式处理器类型有Am186/88、386EX、SC-400、PowerPC、68000、MIPS、ARM/StrongARM系列等。

嵌入式微控制器的典型代表是单片机,从70年代末单片机出现到今天,虽然已经经过了20多年的历史,但这种8位的电子器件在嵌入式设备中仍然有着极其广泛的应用。单片机芯片内部集成ROM/EPROM、RAM、总线、总线逻辑、定时/计数器、看门狗、I/O、串行口、脉宽调制输出、A/D、D/A、FlashRAM、EEPROM等各种必要功能和外设。和嵌入式微处理器相比,微控制器的最大特点是单片化,体积大大减小,从而使功耗和成本下降、可靠性提高。微控制器的片上外设资源一般比较丰富,适合于控制,因此称微控制器。

由于MCU低廉的价格,优良的功能,所以拥有的品种和数量最多,比较有代表性的包括8051、MCS-251、MCS-96/196/296、P51XA、C166/167、68K系列以及MCU8XC930/931、C540、C541,并且有支持I2C、CAN-Bus、LCD及众多专用MCU和兼容系列,MCU占嵌入式系统约70%的市场份额,Atmel出产的Avr单片机由于其集成了FPGA等器件,所以具有很高的性价比,势必将推动单片机获得更高的发展。

嵌入式DSP处理器(EmbeddedDigitalSignalProcessor,EDSP)

DSP处理器是专门用于信号处理方面的处理器,其在系统结构和指令算法方面进行了特殊设计,具有很高的编译效率和指令的执行速度。在数字滤波、FFT、谱分析等各种仪器上DSP获得了大规模的应用。

DSP的理论算法在70年代就已经出现,但是由于专门的DSP处理器还未出现,所以这种理论算法只能通过MPU等由分立元件实现。MPU较低的处理速度无法满足DSP的算法要求,其应用领域仅仅局限于一些尖端的高科技领域。随着大规模集成电路技术发展,1982年世界上诞生了首枚DSP芯片。其运算速度比MPU快了几十倍,在语音合成和编码解码器中得到了广泛应用。至80年代中期,随着CMOS技术的进步与发展,第二代基于CMOS工艺的DSP芯片应运而生,其存储容量和运算速度都得到成倍提高,成为语音处理、图像硬件处理技术的基础。到80年代后期,DSP的运算速度进一步提高,应用领域也从上述范围扩大到了通信和计算机方面。90年代后,DSP发展到了第五代产品,集成度更高,使用范围也更加广阔。

最为广泛应用的是TI的TMS320C2000/C5000系列,另外如Intel的MCS-296和Siemens的TriCore也有各自的应用范围。

SoC追求产品系统最大包容的集成器件,是嵌入式应用领域的热门话题之
一。SOC最大的特点是成功实现了软硬件无缝结合,直接在处理器片内嵌入操作系统的代码模块。而且SOC具有极高的综合性,在一个硅片内部运用VHDL等硬件描述语言,实现一个复杂的系统。用户不需要再像传统的系统设计一样,绘制庞大复杂的电路板,一点点的连接焊制,只需要使用精确的语言,综合时序设计直接在器件库中调用各种通用处理器的标准,然后通过仿真之后就可以直接交付芯片厂商进行生产。由于绝大部分系统构件都是在系统内部,整个系统就特别简洁,不仅减小了系统的体积和功耗,而且提高了系统的可靠性,提高了设计生产效率。

由于SOC往往是专用的,所以大部分都不为用户所知,比较典型的SOC产品是Philips的SmartXA。少数通用系列如Siemens的TriCore,Motorola的M-Core,某些ARM系列器件,Echelon和Motorola联合研制的Neuron芯片等。

预计不久的将来,一些大的芯片公司将通过推出成熟的、能占领多数市场的SOC芯片,一举击退竞争者。SOC芯片也将在声音、图像、影视、网络及系统逻辑等应用领域中发挥重要作用。

从软件方面划分,主要可以依据操作系统的类型。嵌入式系统的软件主要有两大类:实时系统和分时系统。其中实时系统又分为两类:硬实时系统和软实时系统。

实时嵌入系统是为执行特定功能而设计的,可以严格的按时序执行功能。其最大的特征就是程序的执行具有确定性。在实时系统中,如果系统在指定的时间内未能实现某个确定的任务,会导致系统的全面失败,则系统被称为硬实时系统。而在软实时系统中,虽然响应时间同样重要,但是超时却不会导致致命错误。一个硬实时系统往往在硬件上需要添加专门用于时间和优先级管理的控制芯片,而软实时系统则主要在软件方面通过编程实现时限的管理。比如WindowsCE就是一个多任务分时系统,而Ucos-II则是典型的实时操作系统。

硬件层中包含嵌入式微处理器、存储器(SDRAM、ROM、Flash等)、通用设备接口和I/O接口(A/D、D/A、I/O等)。在一片嵌入式处理器基础上添加电源电路、时钟电路和存储器电路,就构成了一个嵌入式核心控制模块。其中操作系统和应用程序都可以固化在ROM中。

嵌入式系统硬件层的核心是嵌入式微处理器,嵌入式微处理器与通用CPU最大的不同在于嵌入式微处理器大多工作在为特定用户群所专用设计的系统中,它将通用CPU许多由板卡完成的任务集成在芯片内部,从而有利于嵌入式系统在设计时趋于小型化,同时还具有很高的效率和